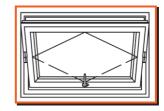


Type 2.0: Sonstige (Sonder-) Fensterkonstruktionen

- 2.1 PSK-Türen
- 2.2 Faltschiebetüren
- 2.3 Schwingfenster
- 2.4 Sonstige, (Sonder-) Elemente

Prüfkörper E


Prüfkörper Typ 2.4 Barrierefrei (Schwelle)

Prüfkörper F

Prüfkörper Typ 2.1 PSK-Türen

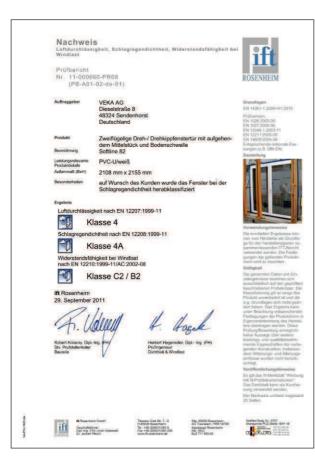
Prüfkörper G

Prüfkörper Typ 2.3 Schwingfenster

Übertragbarkeit auf weitere Fenstertypen:

Übertragung: auf Flügelgrößen gemäß Systembeschreibung oder kleiner, bei Einhaltung der Verriegelungsabstände, ähnlichem Format, Einhaltung des Flügelgewichtes und gleich bleibender Fertigungsqualität.

Bestimmungsdetails des Probekörper siehe RAL-GZ 716/1 Abs. 3. Übertragung der Prüfwerte gemäß Produktnorm EN 14351-1.

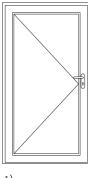

- 1. Glasteilende Sprossen statisch ausreichend bemessen
- 2. Symmetrische oder asymmetrische Aufteilung
- 3. Pfosten statisch ausreichend bemessen
- 4. Riegel statisch ausreichend bemessen
- 5. Festverglasung oben und/oder unten
- 6. Festverglasung seitlich und/oder beidseitig
- 7. Mit Pfosten, nicht als Fenster mit aufgehendem Mittelstück
- 8. Als Fenstertür

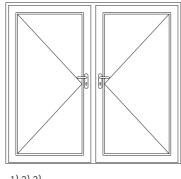
	Prüfart	Variante / Typ	Nachweis/ Gutachtliche Stellungnahme/ Bewertung	Prüfkörper	Wert oder Klasse
4.2	Widerstand gegen Windlast	Zweiflügelige Dreh-/Drehkippfenstertür mit aufgehendem Mittelstück und Bodenschwelle Flügelgröße: 1000 mm x 2100 mm Flügelhöhe 84 mm	Prüfbericht 11-C00660-PR08 (PB-A01-02-de-01) ift-Rosenheim	D	C2 / B2-4A-4
4.5	Schlagregen- dichtheit	Einflügelige Drehkippfenstertür mit Bodenschwelle Typ 2.4.2 Flügelgröße: 1000 mm x 2100 mm Flügelhöhe 84 mm	Gutachtliche Stellungnahme 11–000660–PR19 (GAS–A01–02–de–01) ift–Rosenheim	E	4A
4.14	Luftdurchlässigkeit	Parallel-Schiebe-Türe mit seitlicher Drehkippfenstertür Typ 2.1 Flügelgröße:1150 mm x 2200 mm Flügelhöhe: 84 mm	Prüfbericht 12-C01954-PR03 (PB-A01-02-de-01) ift-Rosenheim	F	C3 / B3-9A-4
		Einflügeliges Schwingfenster mit untenliegender Festverglasung Typ 2.3 Flügelgröße: 1922 mm x 1422 mm Flügelhöhe: 114 mm	Prüfbericht 12–001954–PR02 (PB–A01–02–de–01) ift-Rosenheim	G	C3 / B3-7A-4
4.7	Stoßfestigkeit	Einflügeliges Drehkippfenster SOFTLINE 82 AD/MD Flügelhöhe 80 mm (SOFTLINE 70)	Gutachtliche Stellungnahme 11–000660–PR22 (GAS–A01–03–de–01) ift–Rosenheim	-	Klasse 2

Die Ergebnisse der Windlast beziehen sich auf die tatsächlich geprüfte Größe. Bei veränderten Höhen und Breiten der Elemente sind andere Klassen möglich.






Type 3.1: Haustüren



Prüfkörper Typ 3.1.1

Übertragbarkeit auf weitere Fenstertypen:

1) 2) 3)

Übertragung: auf Flügelgrößen gemäß Systembeschreibung oder kleiner, bei Einhaltung der Verriegelungsabstände, ähnlichem Format, Einhaltung des Flügelgewichtes und gleich bleibender Fertigungsqualität.

Bestimmungsdetails des Probekörper siehe RAL-GZ 716/1 Abs. 3. Übertragung der Prüfwerte gemäß Produktnorm EN 14351-1.

- 1. Glasteilende Sprossen statisch ausreichend bemessen
- 2. Symmetrische oder asymmetrische Aufteilung
- 3. Pfosten statisch ausreichend bemessen
- 4. Riegel statisch ausreichend bemessen
- 5. Festverglasung oben und/oder unten
- 6. Festverglasung seitlich und/oder beidseitig
- 7. Mit Pfosten, nicht als Fenster mit aufgehendem Mittelstück
- 8. Als Fenstertür

	Prüfart	Variante / Typ	Nachweis/ Gutachtliche Stellungnahme/ Bewertung	Prüfkörper	Wert oder Klasse
4.2	Widerstand gegen Windlast	Außentür, einflügelig mit Schwelle Flügelgröße: 1092 x 2358 mm Flügelhöhe 125 mm	Gutachtliche Stellungnahme 11–002384–PR01 (GAS–C01–02–de–01) ift-Rosenheim	F	C2 / B2-3A-3 (Situation1) C2 / B2-4A-3 (Situation 2)
4.5					
	Schlagregen– dichtheit				
4.14	D. B. Spanning				
	Luftdurchlässigkeit				
4.7	Stoßfestigkeit	Einflügeliges Drehkippfenster SOFTLINE 82 AD/MD	Gutachtliche Stellungnahme 11–000660–PR22 (GAS–A01–03–de–01) ift-Rosenheim	-	Klasse 2
	Stoblestigkeit				

Die Ergebnisse der Windlast beziehen sich auf die tatsächlich geprüfte Größe. Bei veränderten Höhen und Breiten der Elemente sind andere Klassen möglich.

Prüfnachweise Wärmedurchgangskoeffizient

Wärme SOFTLINE 82 MD

Wärme SOFTLINE 82 AD

Wärmedurchgangskoeffizient U-Wert Fenster/Türen 82mm-Systeme

Nachstehende Ergebnisse sind kaufmännisch gerundet (DIN 1333) dargestellt.

1-flg. Fenster:

1,23 x 1,48m

 $A_W=1,82m^2/A_g=66\%$

Berechnung entsprechend EN ISO 10077-1

Verglasung Profilsystem	U _f - Wert *** [W/(m²K)]	Ψ _g - Wert *** [W/(m²K)]	1,6	EnEV	/2009-Son 1,4	derglas	1,2	U _q -V [W/(m		0,9	8,0	0,7	0,6	0,5
SOFTLINE 82 AD	1 1	Alu	1,6	1,5	1,5	1,4	1,3	1,3	1,2	1,1	1,1	1,0	0,94	0,87
SYSTEM	1,1	Warm	1,6	1,5	1,4	1,4	1,3	1,2	1,2	1,1	1,0	0,96	0,89	0,82
SOFTLINE 82 MD	1,0	Alu	1,6	1,5	1,4	1,4	1,3	1,2	1,2	1,1	1,0	0,97	0,9	0,84
SYSTEM	1,0	Warm	1,5	1,5	1,4	1,3	1,3	1,2	1,1	1,1	0,99	0,92	0,86	0,79

2-flg. Hebe-Schiebetür:

3,50 x 2,20m

 $A_W = 7.70 \text{ m}^2/A_q = 74\%$

Berechnung entsprechend EN ISO 10077-1

VEKASLIDE	1.4	Alu	1,7	1,6	1,5	1,4	1,4	1,3	1,2	1,2	1,1	1.0	0,93	0,85
82 - HST	1,7	Warm	1,6	1,6	1,5	1,4	1,3	1,3	1,2	1,1	1,0	0,97	0,89	0,82

1-flg. Haustür:

1,10 x 2,20m

 $A_D = 2.42 \text{ m}^2/A_0 = 58\%$

Berechnung entsprechend EN ISO 10077-1

SOFTLINE 82 AD-HT	1,4	Alu	1,7	1,6	1,6	1,5	1,4	1,4	1,3	1,3	1,2	1,1	1,1	1,0
SOFTLINE 82 AD-III	1,4	Warm	1,6	1,6	1,5	1,5	1,4	1,3	1,3	1,2	1,2	1,1	1,0	0,99
SOFTLINE 82 MD-HT	1,3	Alu	1,6	1,6	1,5	1,5	1,4	1,3	1,3	1,2	1,2	1,1	1,0	0,99
SUFILINE 62 IVID-HT	۱۱۹	Warm	1,6	1,5	1,5	1,4	1,4	1,3	1,2	1,2	1,1	1,1	1,0	0,95

Die Ergebnisse sind normkonform auf zwei wertanzeigende Ziffern gerundet.

 U_q -Wert* = nach EN 673, ENEV2009 konform

Profile mit Armierung im Blend- und Flügelrahmen

 U_{f} -Wert** = ift10001675F

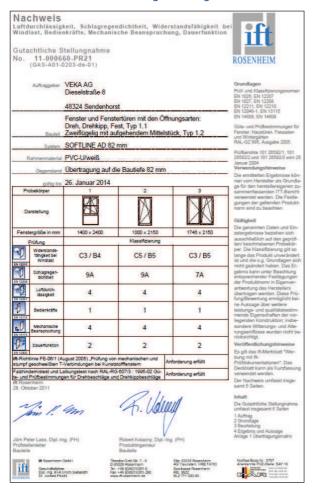
Formel:

ift10001675PR02; bzw. Mittelwert für die Profilkombinationen

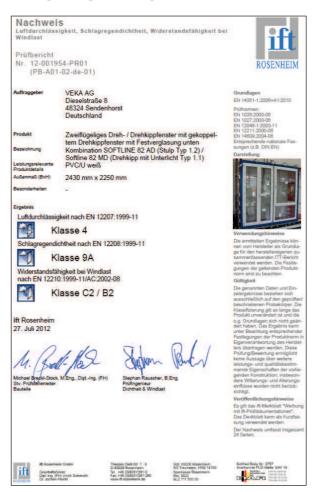
 $\Psi_{\text{\tiny q}}\text{-Wert}^{\text{***}}=$

Pauschal f. Alu: 0,07 W/(mK) bzw. Warm: 0,05 W/(mK); Abhängig von der Verglasung

Ψ_{Einbau}-Wert unberücksichtigt


$$U_W = \frac{\sum (U_f \times A_f) + \sum (U_g \times A_g) + \sum (l_g \times \Psi_g)}{\sum (A_f + A_g)}$$

 $\label{eq:power_power} $$U=W \otimes W/(m^2K); A=F \otimes W/(m^2K); A=$



Ergänzende Leistungsnachweise

Übertragung SOFTLINE 82 Mitteldichtung auf SOFTLINE 82 Anschlagdichtung.

Ergänzungsprüfung zur linksstehenden Übertragung (Mittlerweile wurden bei zusätzlichen Prüfungen auch Anschlagdichtungs-Elemente getestet)

Stumpfgeschweißte T-Verbindung

Mechanische T-Verbindung (Zink-Druckguss SL82MD)

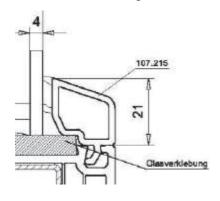
Mechanische T-Verbindung (Kunststoff-Verbinder)

Mechanische T-Verbindung (Zink-Druckguss SL82AD)

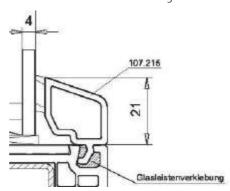
Verbreiterungen – Nachweis der Luftdurchlässigkeit

Nachweise zum Einbruchschutz

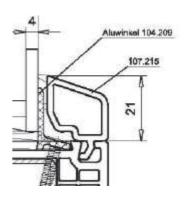
Die Erfüllung der Eigenschaft Einbruchhemmung an Kunststofffenstern ist maßgeblich von der eingesetzten Beschlagvariante abhängig.


Alle namhaften Beschlaghersteller haben deren Produkte auf das VEKA Systemen abgestimmt und diese Varianten über entsprechende Prüfungen bei notifizierten Stellen bewerten lassen. Sie verfügen somit über entsprechende Nachweise/ITT's.

Die aktuellen Nachweise zum Einbruchschutz und die damit verbundenen technischen Dokumentationen können über die jeweiligen Beschlaghäuser angefragt werden.


Glassicherung:

Unabhängig vom eingesetzten System und Beschlag wurden der Firma VEKA mit der gutachtlichen Stellungnahme Nr. 255 43182 drei Varianten zur Sicherung der Verglasung für Einbruch hemmende Fenster der Klasse RC2 (früher WK2) durch das ift-Rosenheim bestätigt.


Variante 1: Glasverklebung

Variante 2: Glasleistenverklebung

Variante 3: Aluwinkel 104.209

Übersicht der Schallschutzprüfungen SOFTLINE 82 und ALPHALINE 90

Geprüfter Fenstertyp 1.1: Einflügeliges Drehkippfenster

		n] ²	[kg] ³		C,			geprüftes System			
Nr.	Glasaufbau ¹ (von außen nach Innen)	Gesamtglasstärke [mm] ²	ca. Glasgewicht je m² [kg]	Füllung	Schalldämmmaß der Glasscheibe in dß (C; It. Scheibenhersteller	Schalldämmmaß des Fensters in dB (C; C _{tr}) Prüfwert ⁵	Schallschutzklasse	SOFTLINE 82 MD	SOFTLINE 82 AD	ALPHALINE 90	Prüfbericht Nr.
1	4/16/4	24	20	Ar	32	34 (-0;-3)	2			х	HFB 31100 1733 / 1a / 08
2	4/12/4/12/4	36	30	Kr	35 (-2;-6)	34 (-1;-4)	2			х	HFB 31100 1733 / 14a / 08
3	4/16/4/16/4	44	30	Ar	34 (-2;-6)	35 (-1;-4)	3			х	HFB 31100 1733 / 13a / 08
4	4/12/4/12/4	36	30	Ar	32	36 (-1;-4)	3	х			HFB 31100 2010 / 2 / 2012
5	4/16/4/16/4	44	30	Ar	34 (-2;-6)	36 (-1;-4)	3	х			HFB 31100 2010 / 1 / 2012
6	4/16/4/16/4	44	30	Ar	34 (-2;-6)	36 (-2;-5)	3		х		HFB 31100 2064 / 1a / 2012
7	6/16/4	36	25	Ar	36 (-2;-5)	37 (-1;-3)	3			х	HFB 31100 1733 / 2a / 08
8	8/16/4	28	30	Ar	37 (-2;-6)	38 (-1;-4)	3			х	HFB 31100 1733 / 3a / 08
9	6/12/4/12/4	38	35	Ar	36 (-2;-5)	39 (-1;-4)	3	х			HFB 31100 2074 / 3 / 2012
10	8/12/4/12/6	42	45	Ar	39 (-1;-4)	39 (-2;-2)	3	х			HFB 31100 2074 / 4 / 2012
11	10/16/4	30	35	Ar	38 (-2;-6)	39 (-2;-4)	3			х	HFB 31100 1733 / 4a / 08
12	10/12/4/12/6	44	50	Ar	40 (-1;-3)	40 (-1;-2)	4	х			HFB 31100 2074 / 5 / 2012
13	4/16/4/16/8	48	40	Ar	-	40 (-1;-3)	4	х			HFB 31100 2010 / 4 / 2012
14	BG ipl. E F. 8 FM/12/4FM/12/BG ipl. E Fl. 6 FM	42	45	Ar	-	41 (-1;-2)	4			х	HFB 31100 1733 / 21a / 08
15	6/12/4/12/VSG-SI 44.1	42	45	Ar	42 (-1;-5)	41 (-1;-4)	4		х		HFB 31100 2010 / 8 / 2012
16	VSG-SI 33.1/16/6	28	30	Ar	40 (-2;-6)	41 (-1;-4)	4	х			HFB 31100 2074 / 1 / 2012
17	4/16/4/16/6	46	35	Ar	-	41 (-2;-4)	4	х			HFB 31100 2010 / 3 / 2012
18	VSG-SI 33.1/16/10	32	40	Ar	44 (-2;-7)	42 (-1;-3)	4			х	HFB 31100 1733 / 9a / 08
19	6/12/4/12/VSG-SI 44.1	42	45	Ar	42 (-1;-5)	42 (-1;-4)	4			х	HFB 31100 1733 / 15a / 08
20	VSG-SI 33.1/16/6	28	30	Ar	40 (-2;-6)	42 (-1;-4)	4			х	HFB 31100 1733 / 5a / 08
21	VSG-SI 44.1/16/6	30	35	Ar	42 (-2;-6)	42 (-1;-4)	4			х	HFB 31100 1733 / 6a / 08
22	6/12/4/12/VSG-SI 44.1	42	45	Ar	42 (-1;-5)	42 (-2;-4)	4	х			HFB 31100 2010 / 7 / 2012
23	VSG-SI 44.1/16/6	30	35	Ar	42 (-2;-6)	42 (-2;-4)	4	х			HFB 31100 2074 / 2 / 2012
24	BG ipl. E F. 8 FM/12/6FM/12/BG ipl. E SF. 9 FM	47	57,5	Ar	-	43 (-1;-3)	4			х	HFB 31100 1733 / 22a / 08
25	8/12/4/12/VSG-SI 44.1	44	50	Ar	45 (-2;-6)	44 (-1;-3)	4	х			HFB 31100 2010 / 6 / 2012
26	VSG-SI 55.1/16/VSG-SI 44.1	34	45	Ar	46	44 (-1;-3)	4			х	HFB 31100 1733 / 10a / 08
27	10/18/8	36	45	Ar	-	44 (-1;-4)	4	х			HFB 31100 2010 / 5 / 2012
28	10/18/8	36	45	Ar	-	44 (-2;-4)	4		х		HFB 31100 2064 / 1b / 2012
29	VSG-SI 66.2/20/ VSG-SI 44.2	40	50	Ar	48	47 (-1;-3)	5			х	HFB 31100 1733 / 11a / 08
30	VSG-SI 66.1/12/6/12/ VSG-SI 44.1	50	65	Ar	50 (-2;-6)	47 (-1;-3)	5			х	HFB 31100 1733 / 19a / 08

¹⁾ Der Glasaufbau bestimmt maßgeblich das Fenstergewicht. Die Umsetzung im Hinblick auf die Fenstergröße, Fensterausstattung, Beschlagbefestigung und Montage ist bei der Planung zu berücksichtigen.

⁵) in einigen Fällen wird vom Auftraggeber der dB-Wert als Rechenwert verlangt. Hier ist zu beachten, dass der angegebene Prüfwert um ein Vorhaltemaß von 2 dB bei Fenstern und 5 dB bei Türen herabzusetzten ist.

²) Achtung: Die tatsächliche Gesamtglasdicke kann bei Verwendung von Folie (VSG) von der angegebenen abweichen. Bitte Rücksprache mit dem Glaslieferanten halten

Ermittlung des Glasgewichtes wie folgt: je mm Scheibendicke 2,5 kg Scheibengewicht

⁴⁾ zu den im System geprüften Isolierglasscheiben der ausgewählten Glaslieferanten liegen teilweise keine Werte des Schalldammmaßes vor

Geprüfter Fenstertyp 1.1: Einflügeliges Drehkippfenster (Fortsetzung)

	,, ,, ,	Gesamtglasstärke [mm] ²	Glasgewicht je m² [kg] ³	ри	Schalldämmmaß der Glasscheibe in dB (C; C _{r,}) It. Scheibenhersteller ⁴	Schalldämmmaß des Fensters in dB (C; C _{tr}) Prüfwert ⁵	Schallschutzklasse		eprüfte System CINE 82 AD		
Nr.	Glasaufbau ¹ (von außen nach Innen)	Gesar	ca. Gl	Füllung	Schal Glass It. Scl	Schalldär Fensters i Prüfwert	Schal	SOFTI	SOFTLINE	ALPH	Prüfbericht Nr.
31	VSG-SI 66.1/12/6/12/VSG-SI 44.1	50	65	Ar	50 (-2;-6)	45 (-0;-2)	5	х			HFB 31100 2074 / 6 / 2012
32	8/12/4/12/VSG-SI 44.1	44	50	Kr	45 (-2;-6)	45 (-1;-3)	5			х	HFB 31100 1733 / 17a / 08
33	8/12/4/12/VSG-SI 44.1	44	50	Ar	45 (-2;-6)	45 (-1;-4)	5			х	HFB 31100 1733 / 16a / 08
34	SF 17 FM/16/BG ipl. E SF 13 FM	46	75	Ar	52	45 (-2;-3)	5			х	HFB 31100 1733 / 20a / 08
35	VSG-SI 66.2/24/ VSG-SI 44.2	44	50	Ar	50 (-2;-8)	46 (-1;-3)	5			х	HFB 31100 1733 / 12a / 08
36	VSG-SI 44.1/12/4/12/ VSG-SI 44.1	44	50	Ar	47 (-2;-6)	46 (-1;-4)	5			х	HFB 31100 1733 / 18a / 08

Geprüfter Fenstertyp: Einflügeliges Element mit Bodenschwelle

37	4/16/4	24	20	Ar	32	33 (-1;-3)	2		х	HFB 31100 1733 / 34a / 08
38	8/16/4	28	30	Ar	37 (-2;-6)	38 (-1;-3)	3		х	HFB 31100 1733 / 38a / 08
39	8/16/4	28	30	Ar	37 (-2;-6)	38 (-2;-4)	3		х	HFB 31100 1733 / 35a / 08
40	VSG-SI 33.1/16/10	32	40	Ar	44 (-2;-7)	42 (-1;-3)	4		х	HFB 31100 1733 / 36a / 08
41	VSG-SI 33.1/16/10	32	40	Ar	44 (-2;-7)	42 (-1;-3)	4		х	HFB 31100 1733 / 39a / 08
42	6/12/4/12/VSG-SI 44.1	42	45	Ar	42 (-1;-5)	42 (-2;-5)	4	х		HFB 31100 2010 / 9 / 2012
43	VSG-SI 55.1/16/VSG-SI 44.1	34	45	Ar	46 (-2;-6)	43 (-1;-3)	4		х	HFB 31100 1733 / 37a / 08
44	VSG-SI 55.1/16/VSG-SI 44.1	34	45	Ar	46 (-2;-6)	43 (-1;-3)	4		х	HFB 31100 1733 / 40a / 08

Geprüfter Fenstertyp: Einflügeliges Element mit Zuluftelement

45	VSG-SI 44.1 / 20 / 8 mit aereco ZFHV 40	36	45	Ar	44 (-2;-6)	40 (-1:-4)	4	х		HFB 31100 2116 / 1 / 2013
46	VSG-SI 44.2/12/4/12/6 mit aereco ZFHV 40	43	46	Ar	42 (-2;-6)	39 (-1;-3)	3	х		HFB 31100 2116 / 2 / 2013
47	VSG-SI 44.1 / 20 / 8 mit AEROMAT mini	36	45	Ar	44 (-2;-6)	41 (-1;-3)	4	х		HFB 31100 2116 / 3 / 2013
48	VSG-SI 44.2/12/4/12/6 mit AEROMAT mini	43	46	Ar	42 (-2;-6)	40 (-1;-3)	4	х		HFB 31100 2116 / 4 / 2013

¹⁾ Der Glasaufbau bestimmt maßgeblich das Fenstergewicht. Die Umsetzung im Hinblick auf die Fenstergröße, Fensterausstattung, Beschlagbefestigung und Montage ist bei der Planung zu berücksichtigen.

²) Achtung: Die tatsächliche Gesamtglasdicke kann bei Verwendung von Folie (VSG) von der angegebenen abweichen. Bitte Rücksprache mit dem Glaslieferanten halten

³) Ermittlung des Glasgewichtes wie folgt: je mm Scheibendicke 2,5 kg Scheibengewicht

⁴) zu den im System geprüften Isolierglasscheiben der ausgewählten Glaslieferanten liegen teilweise keine Werte des Schalldämmmaßes vor.

⁵) in einigen Fällen wird vom Auftraggeber der dB-Wert als Rechenwert verlangt. Hier ist zu beachten, dass der angegebene Prüfwert um ein Vorhaltemaß von 2 dB bei Fenstern und 5 dB bei Türen herabzusetzten ist.

Geprüfter Fenstertyp: Festverglastes Element

		n] ²	[kg] ³		C _t)				eprüfte System		
Nr.	Glasaufbau ¹ (von außen nach Innen)	Gesamtglasstärke [mm]	ca. Glasgewicht je m²	Füllung	Schalldämmmaß der Glasscheibe in dß (C; It. Scheibenhersteller	Schalldämmmaß des Fensters in dB (C; Ctr) Prüfwert ⁵	Schallschutzklasse	SOFTLINE 82 MD	SOFTLINE 82 AD	ALPHALINE 90	Prüfbericht Nr.
49	6/12/4/12/VSG-SI 44.1	42	45	Ar	42 (-1;-5)	43 (-2:-5)	4			х	HFB 31100 1733 / 23a / 08
50	8/12/4/12/VSG-SI 44.1	44	50	Ar	45 (-2;-6)	45 (-2;-5)	5			х	HFB 31100 1733 / 24a / 08
51	VSG-SI 66.1/12/6/12/VSG-SI 44.1	50	65	Ar	50 (-2;-6)	48 (-1;-4)	5			х	HFB 31100 1733 / 25a / 08

Geprüfter Fenstertyp: Zweiflügeliges Dreh- Drehkippfenster mit Stulp

52	8/16/4	28	30	Ar	37 (-2;-6)	40 (-1;-3)	4		х	HFB 31100 1733 / 26a / 08
53	BG ipl. E FL.8FM/12/6FM/12/BG ipl. E Fl.9FM	47	57,5	Ar	-	40 (-1;-3)	4		х	HFB 31100 1733 / 33a / 08
54	BG ipl. E FL.8FM/12/4FM/12/BG ipl. E Fl.6FM	42	45	Ar	-	41 (-1;-2)	4		х	HFB 31100 1733 / 32a / 08
55	6/12/4/12/VSG-SI 44.1	42	45	Ar	42 (-1;-5)	41 (-1;-3)	4	х		HFB 31100 2010 / 10 / 2012
56	VSG-SI 44.1/16/6	30	35	Ar	42 (-2;-6)	42 (-1;-3)	4		х	HFB 31100 1733 / 27a / 08
57	6/12/4/12/VSG-SI 44.1	42	45	Ar	42 (-1;-5)	43 (-1;-4)	4		х	HFB 31100 1733 / 29a / 08
58	8/12/4/12/VSG-SI 44.1	44	50	Ar	45 (-2;-6)	44 (-1;-3)	4		х	HFB 31100 1733 / 30a / 08
59	VSG-SI 55.1/16/VSG-SI 44.1	34	45	Ar	46 (-2;-6)	44 (-1;-3)	4		х	HFB 31100 1733 / 28a / 08
60	SF 17 FM/16/BG ipl. E SF 13 FM	46	75	Ar	52	46 (-1;-3)	5		х	HFB 31100 1733 / 31a / 08

¹⁾ Der Glasaufbau bestimmt maßgeblich das Fenstergewicht. Die Umsetzung im Hinblick auf die Fenstergröße, Fensterausstattung, Beschlagbefestigung und Montage ist bei der Planung zu berücksichtigen.

²) Achtung: Die tatsächliche Gesamtglasdicke kann bei Verwendung von Folie (VSG) von der angegebenen abweichen. Bitte Rücksprache mit dem Glaslieferanten halten

³⁾ Ermittlung des Glasgewichtes wie folgt: je mm Scheibendicke 2,5 kg Scheibengewicht

⁴⁾ zu den im System geprüften Isolierglasscheiben der ausgewählten Glaslieferanten liegen teilweise keine Werte des Schalldämmmaßes vor.

⁵) in einigen Fällen wird vom Auftraggeber der dB-Wert als Rechenwert verlangt. Hier ist zu beachten, dass der angegebene Prüfwert um ein Vorhaltemaß von 2 dB bei Fenstern und 5 dB bei Türen herabzusetzten ist.

Vergleich unterschiedlicher Bauhöhen ("70er, 80er und 100er") am einflügeligen Drehkippfenster ALPHALINE 90

Nr.	Glasaufbau ¹ (von außen nach Innen)	Gesamtglasstärke [mm] ²	ca. Glasgewicht je m² [kg] ³	Füllung	Schalldämmmaß der Glasscheibe in dß (C; C _{tt}) It. Scheibenhersteller ⁴	Schalldämmmaß des Fensters in dB (C; C_{t}) Prüfwert 5	Schallschutzklasse		eprüft auhöh "80er,"		Prüfbericht Nr.
61	VSG-SI 44.1/16/6	30	35	Ar	42 (-2;-6)	42 (-1;-4)	4		х		HFB 31100 1733 / 6a / 08
62	VSG-SI 44.1/16/6	30	35	Ar	42 (-2;-6)	42 (-1;-4)	4	х			HFB 31100 1733 / 7a / 08
63	VSG-SI 44.1/16/6	30	35	Ar	42 (-2;-6)	42 (-1;-4)	4			х	HFB 31100 1733 / 8a / 08

- 1) Der Glasaufbau bestimmt maßgeblich das Fenstergewicht. Die Umsetzung im Hinblick auf die Fenstergröße, Fensterausstattung, Beschlagbefestigung und Montage ist bei der Planung zu berücksichtigen.
- ²) Achtung: Die tatsächliche Gesamtglasdicke kann bei Verwendung von Folie (VSG) von der angegebenen abweichen. Bitte Rücksprache mit dem Glaslieferanten halten
- Ermittlung des Glasgewichtes wie folgt: je mm Scheibendicke 2,5 kg Scheibengewicht
- 4) zu den im System geprüften Isolierglasscheiben der ausgewählten Glaslieferanten liegen teilweise keine Werte des Schalldämmmaßes vor.
- ⁵) in einigen Fällen wird vom Auftraggeber der dB-Wert als Rechenwert verlangt. Hier ist zu beachten, dass der angegebene Prüfwert um ein Vorhaltemaß von 2 dB bei Fenstern und 5 dB bei Türen herabzusetzten ist.

Die Übertragbarkeit von SOFTLINE 82 MD auf SOFTLINE 82 AD ist in dem Prüfbericht HFB 31100 2064 / 2 / 2012 gutachtlich bestätigt. Weitere Ausführungsdetails sind den entsprechenden Prüfberichten zu entnehmen.

Hinweis:

Die Vielzahl der Kombinationsmöglichkeiten von Profilen, Glasaufbauten sowie Glasherstellern erlaubt leider keine durchgängige Nachweisführung für alle theoretisch möglichen Kombinationen durch entsprechende Prüfungen.

Mit oben aufgeführten Prüfungen hat die VEKA AG unterschiedliche Scheibenaufbauten in verschiedenen Fenstersystemen prüftechnisch ermittelt.

Die Ergebnisse dieser umfangreichen Prüfserie zeigen aber, dass sich aufgrund identischer Ausführungsdetails in diesen Systemen wie

- Dichtebenen mit gleichartigen Dichtungen,
- gleiche Beschlagsvarianten,
- gleiche Verstärkungen,
- gleiche Systemmaße bei Auf- und Überdeckmaßen,

bei gleichen Scheibenaufbauten unabhängig vom geprüften System mit annähernd gleichen Ergebnissen zu rechnen ist.

Getrennte Ermittlung der Eigenschaften für Fenster

Eine getrennte Ermittlung der Eigenschaften für Fenster muss nach Tabelle E.1 durchgeführt werden

Abschnitt	Eigenschaft	Klassifizierungs- norm ^a	Prüf- oder Berechnungs- norm	Prüfart ^b	Anzahl der Prüf- körper	Größe des Prüfkörpers	Direkter Anwendungsbereich (ähnliche Konstruktion vorausgesetzt)
4.2	Widerstandsfähigkeit gegen Windlast	EN 12210	EN 12211	Zerstörend	1	Nicht festgelegt	–100 % der Rahmenbreite und – höhe des Prüfkörpers
4.3	Widerstandsfähigkeit gegen Schneelast	Angaben zur Ausfachung	Nationale Bestimmungen und/oder Empfehlungen	Berechnung	-	Nicht festgelegt	–100 % der Gesamtfläche des Prüfkörpers
4.4.1	Brandverhalten	EN 13501-1	Siehe 13501-1	Zerstörend	Siehe EN 13501-1		
4.4.2	Schutz gegen Brand von außen	ENV 13501-5	ENV 1187	Zerstörend	Siehe EN 13501-1		
4.5	Schlagregendichtheit	EN 12208	EN 1027	Zerstörungsfrei	1	Nicht festgelegt	–100 % bis +50 % der Gesamtfläche des Prüfkörpers
4.6	Gefährliche Substanzen	Wie vorgeschrieben					
4.7	Stoßfestigkeit	EN 13049	EN 13049	Zerstörend	1 oder 2	Nicht festgelegt	> Gesamtfläche des Prüfkörpers
4.8	Tragfähigkeit von Sicherheitsvorrichtung en	Schwellenwert	EN 14609	Zerstörungsfrei	1	Nicht festgelegt	-100 % der Gesamtfläche des Prüfkörpers
4.11	Schallschutz	Festgestellte Werte	EN ISO 140-3 EN ISO 717-1	Zerstörungsfrei oder tabellarische Werte	1 -	Siehe Anhang B	Siehe Anhang B
4.12	Wärmedurchgangs- koeffizient	Festgestellter Wert	EN ISO 10077-1:2000 Tabelle F.1	Tabellarische Werte	-	Nicht festgelegt	Alle Größen
			EN ISO 10077-1 und EN ISO 10077-2	Berechnung	-	1,23 (±25 %) m x 1,48 (-25 %) m oder 1,48 (+25 %) m x 2,18 (±25 %) m	Gesamtfläche ≤ 2,3 m² ^{c,d}
							Gesamtfläche > 2,3 m ² ^c
			EN ISO 12567-1 prEN ISO 12567-2	Zerstörungsfrei	1	1,23 (±25 %) m x 1,48 (-25 %) m oder 1,48 (+25 %) m x 2,18 (±25 %) m	Gesamtfläche ≤ 2,3 m² ^{c,d}
							Gesamtfläche > 2,3 m² ^c

Tabelle E.1 (Fortsetzung)

Abschnitt	Eigenschaft	Klassifizierungs- norm ^a	Prüf– oder Berechnungs– norm	Prüfart ^b	Anzahl der Prüf- körper	Größe des Prüfkörpers	Direkter Anwendungsbereich (ähnliche Konstruktion vorausgesetzt)
4.13	Strahlungseigen- schaften (Ausfachung) ^e	Festgestellte Werte	EN 410 EN 13363-1 EN 13363-2	-	-	-	Alle Größen
4.14	Luftdurchlässigkeit	EN 12207	EN 1026	Zerstörungsfrei	1	Nicht festgelegt	–100 % bis 50 % der Gesamtfläche des Prüfkörpers
4.16	Bedienkräfte	EN 13115	EN 12046-1	Zerstörungsfrei	1	Nicht festgelegt	–100 % der Gesamtfläche des Prüfkörpers
4.17	Mechanische Festigkeit	EN 13115	EN 12046-1 EN 14608 EN 14609	Zerstörend oder zerstörungsfrei (ergebnis- abhängig)	1	Nicht festgelegt	–100 % der Gesamtfläche des Prüfkörpers
4.18	Lüftung	Festgestellte Werte	EN 13141-1	Zerstörungsfrei	1	Nicht festgelegt	Gleiche Konstruktion und Größe der Lüftungsvorrichtung
4.19	Durchschusshemmung	EN 1522	EN 1523	Zerstörend	1	Nicht festgelegt	g
4.20	Sprengwirkungs– hemmung	EN 13123-1 EN 13123-2	EN 13124-1 EN 13124-2	Zerstörend	1	Nicht festgelegt	g
4.21	Dauerfunktion	EN 12400	EN 1191	Zerstörend	1	Nicht festgelegt	–100 % der Gesamtfläche des Prüfkörpers
4.22	Differenzklima– verhalten	In Vorbereitung ^a	ENV 13420	Zerstörend	1	1,23 (±25 %) m x 1,48 (-25 %) m	Alle Größen
4.23	Einbruchhemmung	ENV 1627	ENV 1628 ENV 1629 ENV 1630	Zerstörend	Siehe ENV 1627	Nicht festgelegt	Siehe ENV 1627

^a In einigen Fällen sind zusätzliche Informationen im entsprechenden Unterabschnit: angegeben, z.B. zu Verweisungen

Quelle: Produktnorm DIN EN 14351-1

Zerstörungsfreie Prüfung: Der Prüfkörper kann für eine weitere Prüfung verwendet werden. Zerstörende Prüfung: Der Prüfkörper kann nicht für eine weitere Prüfung verwendet werden.

Wenn eine genaue Betrachtung des Wärmeverlustes eines bestimmten Gebäudes gefordert wird, muss der Hersteller genaue und zutreffende, berechnete oder durch Prüfung ermittelte Werte der Wärmedurchgangskoeffizienten (Bemessungswerte) der entsprechenden Größe(n) zur Verfügung stehen.

Unter der Vorraussetzung, dass U_G (siehe EN 673) \leq 1,9 W/(m²K), wird "Gesamtfläche \leq 2,3 m^{2Cd} durch "Alle Größen" ersetzt.

e Gesamtenergiedurchlassgrad, g-Wert und Lichttransmissionsgrad

f Nur handbetätigte Fenster

Bis entsprechende Normen und/oder Leitlinien aufgestellt werden, müssen die nicht ermittelten Bedingungen zwischen dem Hersteller und der Prüfstelle vereinbart werden.

Wechselwirkung zwischen Eigenschaften und Bauteilen

	Bauteil							
Eigenschaften	Beschläge ^a	Dichtungen ^b	Rahmen, Zarge,					
			Werkstoff ^c	Profil ^d	Ve rglasung ^e			
Widerstandsfähigkeit gegen Windlast	(Y)	(Y)	Y	Y	Y			
Widerstandsfähigkeit gegen Schneelast	N	N	N	N	N			
Brandverhalten	(Y)	Y	Υ	(Y)	N			
Schutz gegen Brand von außen	(Y)	(Y)	(Y)	(Y)	(Y)			
Schlagregendichtheit	(Y)	Y	(Y)	Υ	N			
Gefährliche Substanzen	(Y)	(Y)	(Y)	N	(Y)			
Stoßfestigkeit	(Y)	N	(Y)	(Y)	Y			
Tragfähigkeit von Sicherheitsvorrichtungen	Y	N	Y	Y	N			
Fähigkeit zur Freigabe	Y	(Y)	(Y)	(Y)	N			
Schallschutz	N	(Y)	(Y)	Y	Y			
Wärmedurchgangskoeffizient	N	(Y)	(Y)	Υ	Y			
Strahlungseigenschaften	N	N	N	N	Y			
Luftdurchlässigkeit	(Y)	Y	(Y)	Y	N			
Bedienkräfte	Y	Y	(Y)	(Y)	(Y)			
Mechanische Festigkeit	Y	N	(Y)	Y	(Y)			
Lüftung	N	N	N	Υ	N			
Durchschusshemmung	N	N	Y	Υ	Y			
Sprengwirkungshemmung	Y	N	Y	Y	Y			
Dauerfunktion	Y	(Y)	(Y)	(Y)	(Y)			
Differenzklimaverhalten	N	(Y)	Y	Y	N			
Einbruchhemmung	Y	N	Y	Y	Y			

Änderung des Bauteils führt wahrscheinlich zu einer Veränderung der betreffenden Eigenschaft.

Quelle: Produktnorm DIN EN 14351-1

⁽Y) N

Änderung des Bauteils führt möglicherweise zu einer Veränderung der betreffenden Eigenschaft. Änderung des Bauteils führt wahrscheinlich nicht zu einer Veränderung der betreffenden Eigenschaft.